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Abstract The electron pair density can be decomposed into
the symmetric and antisymmetric parts. The antisymmetric
component is connected with the probability that two elec-
trons are coupled to a triplet. On the basis of triplet-coupled
electrons the electron localizability indicator is defined,
describing the correlation of motion of electrons forming
a triplet pair. In case of spin-polarized systems the electron
localizability indicator for triplet pairs combines the two spin
channels together into a single functional.
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1 Introduction

The space partitioning based on the division of the whole
space into compact space filling mutually exclusive regions
(micro-cells) enclosing a fixed amount of same-spin electron
pairs (the ω-restricted partitioning) leads the electron local-
izability indicator (ELI) given as the distribution of charges
needed to form a same-spin electron pair (the ω-restricted
populations), cf. Ref. [1] denoted in the following as Part
I. In case of high mutual avoidance of same-spin electrons
high average number of electrons is needed to form the fixed
fraction of same-spin pair in the micro-cell. From this point
of view ELI describes the correlation of electronic motion of
same-spin electrons [2]. ELI was used to detect signatures of
chemical bonding in molecules.
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Similar procedure, based on integrals of opposite-spin
electron pair density over micro-cells of ω-restricted
partitioning using fixed amount of charge, leads to the elec-
tron localizability indicator for antiparallel-spin pairs
(ELIA), cf. Ref. [3] denoted in the following as Part II. In
case of high mutual avoidance of opposite-spin electrons less
opposite-spin pairs are found in the micro-cell. For micro-
cells restricted to enclose a fixed product of α-spin and β-spin
charge the number of opposite-spin pairs in the respective
micro-cells is a non-constant distribution only for explicitly
correlated wavefunctions. For correlated wavefunction it was
shown that ELIA signatures can be used to characterize the
bonding situation from the viewpoint of opposite-spin pairs.

In case of spin-polarized systems two different ELI distri-
butions will be obtained for the above mentioned partitioning
scheme, one for each spin channel. The widely used electron
localization function (ELF) [4], which in certain sense can
be seen as an approximation to ELI, encountered similar sit-
uation (the derivation of ELF by Becke and Edgecombe was
not restricted to the closed-shell systems only, although all
their examples were). With the interpretation of ELF based
on the kinetic energy densities [5], it was proposed to use
for spin-polarized systems an ELF formula with the kinetic
energy densities split into spin-dependent parts [6], result-
ing in a single “spin-polarized” ELF formula (using the total
kinetic energy densities without this spin-dependent splitting
yields the “closed-shell” formula). For ELI, which of course
is not based on kinetic energy densities, we propose another
way to formulate a single functional for the spin-polarized
case. This approach, described in following sections, is based
on the decomposition of the electron pair density into the
symmetric and antisymmetric parts. Usage of the triplet pair
density (the antisymmetric part) enables to formulate a sin-
gle indicator including both spin parts in a way consistent
with the approach of restricted populations. Additionally, it
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will be shown that ELIA, which has no equivalent in ELF, is
connected with the singlet pair density (the symmetric part
of the decomposition).

2 Theory

The same-spin electron pair density originates from the
decomposition of the electron pair density into same-spin
and opposite-spin parts. Though, this decomposition is not
invariant with respect to the rotation in the spin space [7,8].
The spinless two-particle density matrix ρ2(r′

1r′
2, r1r2) for

the N -electron wavefunction Ψ (x1x2 · · · xN ) [9,10]:

ρ2(r′
1r′

2, r1r2) =
(

N

2

) ∫
dσ1

∫
dσ2

∫
dx3 · · ·

×
∫

dxN Ψ (x′
1x′

2 · · · x′
N )Ψ ∗(x1x2 · · · xN ), (1)

with the combined position and spin coordinates xi = (ri ,

σi ), can always be decomposed into the symmetric and anti-
symmetric parts ρ

(s)
2 (r′

1r′
2, r1r2) and ρ

(t)
2 (r′

1r′
2, r1r2),

respectively [11,12]:

ρ2(r′
1r′

2, r1r2) = ρ
(s)
2 (r′

1r′
2, r1r2) + ρ

(t)
2 (r′

1r′
2, r1r2), (2)

with

ρ
(s)
2 (r′

1r′
2, r1r2) = 1

2

[
ρ2(r′

1r′
2, r1r2)

+ ρ2(r′
1r′

2, r2r1)
]

ρ
(t)
2 (r′

1r′
2, r1r2) = 1

2

[
ρ2(r′

1r′
2, r1r2)

− ρ2(r′
1r′

2, r2r1)
]
.

(3)

The diagonal elements of the above matrices are the singlet
and triplet pair densities ρ

(s)
2 (r1, r2) and ρ

(t)
2 (r1, r2), respec-

tively, with integrals proportional to the probability that two
electrons are coupled to a singlet, resp. a triplet. The total
numbers D(s) and D(t) of singlet resp. triplet electron pairs
equal (with the normalization of Eq. 1) [11]:

D(s) = 1
8 N (N + 2) − 1

2 S(S + 1)

D(t) = 3
8 N (N − 2) + 1

2 S(S + 1).
(4)

The singlet and triplet electron densities ρ(s)(r) and ρ(t)(r),
respectively, are given by:

ρ(s)(r) = 1
4

N+2
N−1 ρ(r) − 1

2
S+1
N−1 ρs(r)

ρ(t)(r) = 3
4

N−2
N−1 ρ(r) + 1

2
S+1
N−1 ρs(r),

(5)

with with total spin quantum number S and the spin density
ρs(r) = ρα(r) − ρβ(r). The singlet and triplet electron den-
sities integrate to the total number of electrons N (s) and N (t)

that couple to a singlet and triplet, respectively:

N (s) = 1
4 N (N+2) − S(S+1)

N−1

N (t) = 3
4 N (N−2) + S(S+1)

N−1 .

(6)

To derive the expression for the electron localizability indi-
cators for the singlet and triplet-coupled electrons let us write
the reduced 2-matrix in familiar terms, i.e., using the same-
spin and opposite-spin 2-matrices:

ρ2(r′
1r′

2, r1r2) = ραα
2 (r′

1r′
2, r1r2) + ρ

ββ
2 (r′

1r′
2, r1r2)

+ ρ
αβ
2 (r′

1r′
2, r1r2) + ρ

βα
2 (r′

1r′
2, r1r2).

(7)

The same-spin 2-matrices for a configuration interaction (CI)
wavefunction constructed from normalized Slater determi-
nants using n orthonormal orbitals φ read (cf. Part I):

ραα
2 (r′

1r′
2, r1r2)

= 1

2

n∑
i< j

n∑
k<l

Pαα
i j,kl |φi (r′

1)φ j (r′
2)| |φ∗

k (r1)φ
∗
l (r2)| (8)

ρ
ββ
2 (r′

1r′
2, r1r2)

= 1

2

n∑
i< j

n∑
k<l

Pββ
i j,kl |φi (r′

1)φ j (r′
2)| |φ∗

k (r1)φ
∗
l (r2)|, (9)

with the discrete representations Pαα
i j,kl and Pββ

i j,kl for the same-
spin combinations of the orbitals. Two Slater determinants
differing at most by same-spin orbitals i, j and k, l, respec-
tively, contribute to the element [i j, kl]. One is free to ascribe
this contribution to the element [ j i, kl] instead (of course,
with opposite sign). But it is more convenient to accumulate
all such contributions in the matrix elements where i < j
and k < l.

The opposite-spin 2-matrices for a CI wavefunction are
given by (cf. Part II):

ρ
αβ
2 (r′

1r′
2, r1r2)

= 1

2

n∑
i,k

n∑
j,l

Pαβ
i j,kl φi (r′

1)φ j (r′
2) φ∗

k (r1)φ
∗
l (r2) (10)

ρ
βα
2 (r′

1r′
2, r1r2)

= 1

2

n∑
i,k

n∑
j,l

Pβα
j i,lk φ j (r′

1)φi (r′
2) φ∗

l (r1)φ
∗
k (r2), (11)

whereby

Pαβ
i j,kl = Pβα

j i,lk . (12)

The simple product form for the opposite-spin terms results
from the integration over spin.

From Eqs. 8 and 9 it can be seen that the exchange of the
coordinates r1 and r2 yields for the same-spin 2-matrices:

ρσσ
2 (r′

1r′
2, r1r2) = −ρσσ

2 (r′
1r′

2, r2r1), (13)

whereas for the the opposite-spin 2-matrices, cf. Eqs. 10 and
11, the following applies:

ρ
αβ
2 (r′

1r′
2, r1r2) = ρ

αβ
2 (r′

1r′
2, r2r1) for r1 = r2 (14)
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and

ρ
αβ
2 (r′

1r′
2, r1r2) �= ρ

αβ
2 (r′

1r′
2, r2r1) for r1 �= r2 (15)

Thus, the same-spin 2-matrices do not participate on the sin-
glet pair density, cf. Eq. 3. Utilizing Eqs. 10–12 it follows that
the singlet 2-matrix for CI wavefunction can be expressed as:

ρ
(s)
2 (r′

1r′
2, r1r2)

= 1

4

n∑
i,k

n∑
j,l

Pαβ
i j,kl ‖φi (r′

1)φ j (r′
2)‖ ‖φ∗

k (r1)φ
∗
l (r2)‖,

(16)

with the permanents:

‖φi (r′
1)φ j (r′

2)‖ = φi (r′
1)φ j (r′

2) + φ j (r′
1)φi (r′

2). (17)

The permanent of a matrix is similar to the determinant but
without taking into acount the signatures of the permutations,
i.e., it represents the symmetric sum of the permutations.

The opposite-spin 2-matrices participate also on the triplet
2-matrix. However, due to the subtraction, cf. Eq. 3, the trip-
let 2-matrix involves determinants instead of the permanents.
From Eq. 13 it is clear that the same-spin contributions to the
triplet 2-matrix are directly given by the same-spin matrices
of Eqs. 8 and 9. Thus, the triplet 2-matrix for a CI wavefunc-
tion reads:

ρ
(t)
2 (r′

1r′
2, r1r2) = 1

2

n∑
i< j

n∑
k<l

(Pαα
i j,kl

+Pββ
i j,kl) |φi (r′

1)φ j (r′
2)| |φ∗

k (r1)φ
∗
l (r2)|

+1

4

n∑
i,k

n∑
j,l

Pαβ
i j,kl |φi (r′

1)φ j (r′
2)| |φ∗

k (r1)φ
∗
l (r2)|.

(18)

Formally, the sum over the opposite-spin terms can be fur-
ther simplified, because for all terms corresponding to i = j ,
respectively k = l, the determinants will vanish. Further-
more, the opposite-spin terms corresponding to the given
combination of indexes [i, j, k, l] can be accumulated into
the single term Pos

i j,kl :

P os
i j,kl = 1

2

(
Pαβ

i j,kl − Pαβ
i j,lk + Pαβ

j i,lk − Pαβ
j i,kl

)
, (19)

with the superscript os for the opposite-spin contribution.
Then, the triplet 2-matrix can be written as:

ρ
(t)
2 (r′

1r′
2, r1r2)

= 1

2

n∑
i< j

n∑
k<l

P(t)
i j,kl |φi (r′

1)φ j (r′
2)| |φ∗

k (r1)φ
∗
l (r2)|, (20)

with

P(t)
i j,kl = Pαα

i j,kl + Pββ
i j,kl + P os

i j,kl . (21)

2.1 ELI for triplet-coupled electrons

In Part I ELI was based on the approach of q-restricted space
partitioning in order to achieve certain similarity with the
ELF formula of Becke and Edgecombe. Later it was found
to be more convenient to use ELI based on the approach of
D-restricted space partitioning [13,14]. Following this idea
the space is partitioned into compact space filling mutually
exclusive micro-cells restricted to enclose a fixed fraction
of an electron pair. Then, in each micro-cell the charge is
determined. ELI is proportional to the distribution of such
charges for infinitesimally small restriction. Focusing on trip-
let coupled electron pairs, now the micro-cells are restricted
to enclose a fixed fraction of a triplet pair. Using the
Taylor expansion of the triplet pair density the number of
triplet pairs D(t)

µ in the micro-cell µ centred around the posi-
tion aµ is approximately given by (cf. Part I):

D(t)
µ ≈ 1

12
V 8/3

µ g(t)(aµ), (22)

where

g(t)(aµ) =
n∑

i< j

n∑
k<l

P(t)
i j,kl

×[φi (aµ)∇φ j (aµ) − φ j (aµ)∇φi (aµ)]
×[φ∗

k (aµ)∇φ∗
l (aµ) − φ∗

l (aµ)∇φ∗
k (aµ)] (23)

is the curvature of the triplet pair density at the position aµ.
Those parts of g(t)(aµ) which are connected with the same-
spin matrices Pσσ

i j,kl are the Fermi hole curvatures:

gσ (aµ) =
σ∑

i< j

σ∑
k<l

Pσσ
i j,kl

×[φi (aµ)∇φ j (aµ) − φ j (aµ)∇φi (aµ)]
×[φ∗

k (aµ)∇φ∗
l (aµ) − φ∗

l (aµ)∇φ∗
k (aµ)]. (24)

Thus, the same-spin electron pairs have the following con-
tribution to the triplet pair population in the micro-cell µ:

Dαα
µ + Dββ

µ ≈ 1

12
V 8/3

µ

[
gα(aµ) + gβ(aµ)

]
. (25)

The remaining part of D(t)
µ accounts for the contribution of

opposite-spin electron pairs (this should not be mistaken for
the number of opposite-spin pairs in micro-cell µ, which is
proportional to the on-top pair density, cf. Part II).

The volume Vµ of the micro-cell µ enclosing D(t)
µ triplet

pairs is approximately given by (cf. Eq. 22):

Vµ ≈
[

D(t)
µ

]3/8
[

12

g(t)(aµ)

]3/8

. (26)

With the restriction D(t) (without the index µ because the
restriction applies to all micro-cells) the integration of the
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triplet density ρ(t) over the corresponding ω-restricted par-
titioning yields the ω-restricted distribution of charges ζ

(t)
D

(the superscript indicates that the triplet charge is sampled in
the micro-cells):

ζ
(t)
D (aµ) ≈ ρ(t)(aµ) Vµ

≈
[

D(t)
]3/8

ρ(t)(aµ)

[
12

g(t)(aµ)

]3/8

. (27)

For fixed infinitesimally small D(t) we can define ELI for
triplet-coupled electrons Υ

(t)
D (the triplet charge in the micro-

cells is sampled):

Υ
(t)
D (r) = ρ(t)(r) ṼD(t) (r), (28)

with the pair-volume function ṼD(t) (r) for the tripled pairs:

ṼD(t) (r) =
[

12

g(t)(r)

]3/8

. (29)

Observe the change from the discrete position representa-
tion aµ to the quasi-continuous representation r. Following
Eq. 28 ELI is proportional to the triplet charge needed to
form the fixed fraction D(t) of a triplet pair. Of course, only
if the restriction D(t) is explicitly given, the corresponding
ω-restricted space partitioning could be determined, i.e., the
number of the micro-cells and their discrete positions aµ.
Without the explicite given value of D(t) we only know that
the number of micro-cells is some finite number. Neverthe-
less, the ELI value Υ

(t)
D (r) can be computed at any position

r, bearing in mind that it is always possible to find such
restriction D(t) that the chosen positions will be hit. Thus, the
distribution of ELI values can be made dense to any extent,
however, not continuous. We use the term quasi-continuous
for such distribution of values.

2.2 ELI for singlet-coupled electrons

Using the approach of q-restricted space partitioning, as
decribed in Part II for ELIA, let as divide the whole space into
compact space filling mutually exclusive micro-cells enclos-
ing a fixed amount of singlet charge q(s). The volume Vµ

of the micro-cell µ centred around the position aµ of such
q(s)-restricted space partitioning is then approximately given
by:

Vµ ≈ q(s) 1

ρ(s)(aµ)
. (30)

The integration of the singlet pair density ρ
(s)
2 over the micro-

cells yields the q(s)-restricted distribution of singlet pair pop-
ulations ζ

(s)
q , which is approximately given by the on-top

value of the singlet pair density ρ
(s)
2 (aµ, aµ) multiplied by

the squared micro-cell volume V 2
µ (cf. Part II):

ζ (s)
q (aµ) ≈ V 2

µ ρ
(s)
2 (aµ, aµ) ≈ [q(s)]2 ρ

(s)
2 (aµ, aµ)

[ρ(s)(aµ)]2
.

(31)

The on-top singlet pair density is the diagonal part of the
singlet 2-matrix, Eq. 16, which for r1 = r2 = aµ reduces to:

ρ
(s)
2 (aµ, aµ)=

n∑
i,k

n∑
j,l

Pαβ
i j,kl φi (aµ) φ j (aµ) φ∗

k (aµ) φ∗
l (aµ).

(32)

For infinitesimally small restriction q(s) we can define ELI
for the singlet-coupled electrons Υ

(s)
q :

Υ (s)
q (r) = 1

2

[
N + 2

N − 1

]2 ρ
(s)
2 (r, r)

[ρ(s)(r)]2
, (33)

which reproduces in the spin-unpolarized case the ELIA
functional for the opposite-spin pairs (cf. Part II, where the
charge product qαqβ was used as the restriction). The
N -dependent factor in the expression for singlet pair ELI
ensures that Υ (s)

q (r) = 1 for closed shell Hartree–Fock wave-
function (in which case the on-top singlet pair density, Eq. 32,
yields ρ(r)2/4).

3 Results

Deeper insight into the relationship between ELI based on
same-spin pair population on the one hand and the triplet pair
population on the other can be gained from the examination
of the opposite-spin contributions originating from wave-
functions given either by a single determinant or by many
determinants. For single-determinantal wavefunction the cor-
responding 2-matrix is much more easy to survey.

3.1 Single-determinantal wavefunctions

The Hartree–Fock (HF) calculation involves only one con-
figuration. If only a single Slater determinant is used, then,
assuming real-valued orbitals, the curvature of the triplet pair
density, Eq. 23, simplifies to:

g(t)(aµ)=
n∑

i< j

P(t)
i j,i j

[
φi (aµ)∇φ j (aµ)−φ j (aµ)∇φi (aµ)

]2

(34)

In this case, the contribution of the same-spin terms to the
triplet pair population, Eq. 25, can be written as (utilizing the
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relation gσ = 2ρσ τσ − 1/4(∇ρσ )2, cf. Part I):

Dαα
µ + Dββ

µ ≈
1

6
V 8/3

µ

[
ρατα − 1

8
(∇ρα)2 + ρβτβ − 1

8
(∇ρβ)2

]
, (35)

with τσ = 1
2

∑σ
i |∇φi |2. Similarly, the remaining opposite-

spin contribution to the triplet pair population reads:

1

12
V 8/3

µ

[
ρατβ + ρβτα − 1

4
∇ρα∇ρβ

]
. (36)

Apparently, for single-determinantal wavefunctions the
triplet pair population in the micro-cell µ can be written as:

D(t)
µ ≈ 1

6
V 8/3

µ

×
[

ρτ − 1

8
(∇ρ)2 − ρατβ + ρβτα

2
+ 1

8
∇ρα∇ρβ

]
.

(37)

In closed-shell case the above equation simplifies to:

D(t)
µ ≈ 1

8
V 8/3

µ

[
ρτ − 1

8
(∇ρ)2

]
. (38)

If the micro-cells are determined by the q-restricted parti-
tioning, i.e., each micro-cell contains the same total charge
q, the volumes of the micro-cells can be expressed accord-
ing to Vµ = q/ρ(aµ), cf. Part I. For infinitesimally small q
Eq. 37 yields the q-restricted triplet pair population for the
HF case:

ζ
(t)
q,H F ≈ q8/3 1

6

ρτ − 1
8 (∇ρ)2

ρ8/3

−q8/3 1

6

1
2 (ρατβ + ρβτα) − 1

8∇ρα∇ρβ

ρ8/3 . (39)

Only the first term of the above equation is proportional to
the kernel of the “closed-shell” ELF formula from Ref. [6]
(however, in ELI for triplet coupled electrons Υ

(t)
D the triplet

density is sampled, which only in closed shell case is pro-
portional to the total density).

In case of closed-shell (S = 0) single-determinantal wave-
functions the elements of the triplet 2-matrix, cf. Eq. 21,
reduce to:

P(t)
i j,kl = 3 Pαα

i j,kl . (40)

In this case, the triplet pair-volume function ṼD(t) , Eq. 29, is
connected with the pair-volume function for the same-spin
pairs ṼDαα :

ṼD(t) =
[

12

g(t)

]3/8

=
[

12

3 gα

]3/8

=
(

1

3

)3/8

ṼDαα . (41)

At the same time (cf. Eq. 5 with ρ = 2ρα):

ρ(t) = 3

2

N − 2

N − 1
ρα. (42)

0 1 2 3 4
r / Bohr

0

1

2

Υ
D

ρ(t)
V
~

D
(t)

ρ V
~

D
(t)

Fig. 1 ELI for the Cr (7S) atom (HF calculation). Dashed line majority
spin; dash-dotted line minority spin; lower solid line sampling of triplet
density; upper solid line sampling of total density

Then, in closed-shell case, ELI for triplet coupled electrons
is proportional to ELI for same-spin pairs Υ α

D = ρα ṼDαα :

Υ
(t)
D = ρ(t) ṼD(t) = 35/8

2

N − 2

N − 1
Υ α

D . (43)

Of course, in the spin-polarized case the ELI for the majority
spin differs from the one for the minority spin as can be seen
in Fig. 1 for the Cr atom (ELI was computed with the pro-
gram DGrid [15] using the basis set of Clementi and Roetti
[16]). However, in the first two shells, the ELI values for the
single spin are similar and very close to the ELI for the trip-
let coupled electrons (lower solid line). Sampling the total
density in the micro-cells, i.e., computing ρṼD(t) yields the
upper solid line in Fig. 1. In this case the resulting values
in the first two shells are roughly 2/33/8 times higher than
Υ α

D , whereas being almost identical with Υ α
D in the valence

shell (where the majority-spin density almost recovers the
total density).

Silvi [17] proposed to use for spin-polarized systems a
“modified ELF” formula. The kernel χmod of this “modified
ELF” includes both same-spin components (using the con-
ditional pair probability densities Pαα

cond and Pββ
cond, cf. Eq. 30

in Ref. [17]):

χmod = 1

3

ρα ∇2 Pαα
cond + ρβ ∇2 Pββ

cond

ρ8/3 . (44)

With the relationship ρα∇2 Pαα
cond = gαα it can be seen that

the kernel χmod is actually proportional to the same-spin part
of the triplet pair population given by Eq. 25 (replacing the
micro-cell volume Vµ by 1/ρ, i.e., using q-restricted space
partitioning):

χmod = 1

3

1

ρ8/3

(
gα + gβ

)
. (45)
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0 1 2 3 4
r / Bohr

0

1

Υ
q(s

)

Fig. 2 Cr (7S) atom (HF calculation): ELI for singlet coupled electrons

For closed-shell HF wavefunction Silvi’s expression would
be proportional to the triplet pair population, cf. Eq. 38 (and
to the same-spin population as well). However, for spin-
polarized systems the opposite-spin term in the triplet pair
population will in general differ from the same-spin term.
Correspondingly, also the kernel of ELI for triplet-coupled
electrons will differ from the kernel of the “modified ELF”
formula.

For single-determinantal wavefunctions the on-top pair
density is given by the product ραρβ . Fixing the charge prod-
uct qαqβ for the ω-restricted partitioning (cf. ELIA in Part
II) yields a uniform opposite-spin pair population over the
micro-cells of such partitioning. In this case, a non-uniform
opposite-spin pair population can emerge only from multi-
determinantal wavefunctions. However, using a fixed amount
of singlet electrons as the restriction for the space partition-
ing, as suggested in previous section for Υ

(s)
q , can change

the situation completely. Now, in spin-polarized case even
for single-determinantal wavefunction the singlet pair popu-
lation over the micro-cells becomes non-uniform, cf. Fig. 2
for the Cr atom, because the squared singlet density ρ(s) is
no more proportional to the product ραρβ (which is true for
ρs = 0, cf. Eq. 5).

3.2 Spin-adapted configurations

For singlet wavefunction (S = 0), an open-shell restricted
determinant is not eigenfunction of the total spin operator.
Instead, an appropriate linear combination of determinants
must be taken (spin-adapted configuration). As an exam-
ple, let us consider the excited singlet state of the minimal
basis H2 molecule, described by determinants with the σg

and σu orbitals occupied. The electrons must have opposite

spin which leads to two determinants:

1√
2

[
σg(r1)α(1) σu(r2)β(2) − σu(r1)β(1) σg(r2)α(2)

]
1√
2

[
σu(r1)α(1) σg(r2)β(2) − σg(r1)β(1) σu(r2)α(2)

] (46)

The singlet spin-adapted configuration 1
Ψ is the sum of the

above determinants [18]:

1
Ψ (r1, r2) = 1

2

[
σg(r1) σu(r2) + σu(r1) σg(r2)

]
× [α(1) β(2) − β(1) α(2)] (47)

The contribution of a particular determinant to the spin-
adapted configuration is given by the symmetry. Unlike the
CI procedure, there is no optimization of the determinant
weight. The optimization of the spin-adapted configuration
concerns only the orbitals themselves. From the above sin-
glet spin-adapted configuration 1

Ψ the electron pair density
ρ2 can be computed:

ρ2(r′
1r′

2, r1r2) =
∫

dσ1

∫
Ψ (x′

1x′
2)Ψ

∗(x1x2) dσ2, (48)

yielding

ρ2(r′
1r′

2, r1r2) = 1

2
‖σg(r′

1)σu(r′
2)‖ ‖σ ∗

g (r1)σ
∗
u (r2)‖.

(49)

In this simple case the exchange of the unprimed coordinates,
cf. Eq. 3, has no effect on the above 2-matrix (matrix perma-
nents are used). Thus, the 2-matrix in Eq. 49 directly yields
the singlet 2-matrix ρ

(s)
2 (of course, the triplet 2-matrix van-

ishes). At the same time, the singlet 2-matrix ρ
(s)
2 is twice

the opposite-spin 2-matrix ρ
αβ
2 .

In our example S = 0 and N = 2, i.e., ρ(s) = ρ (with
the total electron density ρ = σ 2

g + σ 2
u ). Let us perform

q(s)-restricted partitioning of the space, i.e., each micro-cell
µ with the volume Vµ encloses the same fixed amount of
singlet charge q(s) ≈ ρ(s)Vµ. The singlet pair population in
micro-cell µ is approximately given by the product of the
squared micro-cell volume V 2

µ and the on-top value of the
singlet pair density, cf. Part II. By inspection of Eq. 49 (set-
ting all coordinates to the same value) this gives the singlet
pair population ζ

(s)
q,sa for the spin-adapted configuration:

ζ (s)
q,sa ≈ V 2

i 2 σ 2
g σ 2

u ≈ 2 q2 σ 2
g σ 2

u[
σ 2

g + σ 2
u

]2 . (50)

From this it follows that the localizability indicator for
singlet-coupled electrons described by spin-adapted config-
uration is nonuniform. Thus, already the symmetry restric-
tion introduces certain correlation of motion of opposite-spin
electrons. The difference of the two determinants in Eq. 46
yields the triplet spin-adapted configuration with S = 1 and
the spin projection MS = 0. The determinants with the spin
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projection MS = ±1 have both σg and σu occupied by elec-
trons with the same spin. The linear combination of the three
determinants describes the triplet wavefunction 3

Ψ . The elec-
tron pair density ρ2 derived from 3

Ψ reads:

ρ2(r′
1r′

2, r1r2) = 1

2
|σg(r′

1)σu(r′
2)| |σ ∗

g (r1)σ
∗
u (r2)|. (51)

The above 2-matrix directly yields the triplet 2-matrix (now
the singlet 2-matrix vanishes). The ELI for the triplet-cou-
pled electrons can be computed according to Eqs. 28, 29 and
23. Of course, in this simple case the ELI for triplet pairs
is proportional to the ELI for same-spin pairs, because both
same-spin and opposite-spin pair densities are given by iden-
tical spatial function [σg(r1) σu(r2) − σu(r1) σg(r2)]2.

3.3 Multi-determinantal wavefunctions

For correlated wavefunctions from CI calculation the simple
expression using the electron densities and τ , cf. Eq. 37, must
be replaced by the orbital sum of Eq. 23, i.e., the full 2-matrix
must be known to compute ELI for correlated wavefunctions.
As an example for spin-polarized system the ground state
3Σ−

g of the oxygen molecule was computed. The complete
active space calculation for 12 electrons in 12 orbitals was
performed with Gaussian03 [19] using the cc-pVDZ basis
set (bond distance 1.218 Å [20]). The density matrices were
created with the program DGrid and used to compute ELI
for the majority and minority spin, respectively.

The corresponding diagrams are shown in Fig. 3. The ELI
signatures of the lone pairs (the ring shaped gold colored
localization domains) in the diagram for the majority spin,
Fig. 3a, resemble the situation in the F2 molecule (cf. Part I).
The red colored localization domain encloses the single ELI
attractor at the bond midpoint. The ELI for minority spin,
Fig. 3b, shows signatures very different from the previous
one. Now each lone pair signature encloses an ELI attractor
on the bond axis, resembling the lone pair situation in N2

molecule (cf. Part I). Interestingly, the minority ELI shows a
“bifurcated” bond attractor (the two red colored localization
domains), as was found for F2 (Part I). The two spin parts
can be unified into single diagram using ELI for triplet cou-
pled electrons, Fig. 3c. In this total picture the lone pairs are
represented by ring shaped localization domains. The bond
signature encloses a single ELI attractor at bond midpoint.

The ELI for singlet coupled electrons, Fig. 4, shows dis-
tinct signatures for the lone pairs and the bond, similar to the
ELI for triplet coupled electrons. The two ring shaped local-
ization domains characterize the lone pairs as regions, where
more singlet coupled pairs are formed from the fixed sin-
glet charge, than in the the surrounding. The same is true for
the bond signature described by the red colored localization
domain (enclosing a single ELI attractor). In the regions of
low singlet ELI values the opposite spin electrons are avoid-

Fig. 3 ELI for the ground state 3Σ−
g of the O2 molecule. a 1.7 (gold)

and 1.3-localization domains (red) for the majority spin. b 1.7 (gold) and
1.482-localization domains (red) for the minority spin. c 1.55 (gold) and
1.3-localization domains (red) for the triplet coupled electrons. The
color map applies to the slices

Fig. 4 ELI for singlet coupled electrons for the ground state 3Σ−
g of

the O2 molecule. 1.05 (gold) and 1.0-localization domains (red). The
color map applies to the slice

ing each other (thus forming less pairs from the fixed amount
of charge).

ELI for triplet-coupled electrons is proportional to the trip-
let charge (the sampling quantity) that is needed to form fixed
fraction of a triplet pair (the control quantity, determining the
space partitioning). Instead of the triplet charge in the micro-
cells of the D(t)-restricted partitioning it is possible to utilize
the total charge. This is fully consistent with the approach
of restricted populations. Then ELI would be given by the
expression:

ΥD(t) (r) = ρ(r) ṼD(t) (r) = ρ(r)
[

12

g(t)(r)

]3/8

. (52)

In the absence of spin polarization, i.e., ρs(r) = 0, the triplet
density ρ(t) is a certain fraction of the total electron density,
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cf. Eq. 5. In this case ΥD(t) is proportional to Υ
(t)
D and their

topology remains the same. However, for spin-polarized cal-
culation, the value of ELI will be influenced by the spin den-
sity when comparing ΥD(t) and Υ

(t)
D .

Similarly, ELI for singlet-coupled electrons could be based
on q-restricted space partitioning, i.e., each micro-cell
enclosing a fixed total charge. Then the expression for ELI
reads:

Υq(r) = 4
ρ

(s)
2 (r, r)
[ρ(r)]2 . (53)

The factor 4 ensures Υq = 1 for closed-shell HF wavefunc-
tion. Like in the case of triplet-coupled electrons, only in the
absence of spin polarization the ELI for the two restriction
schemes (micro-cells enclosing fixed total charge, respec-
tively fixed number of singlet electrons) are proportional to
each other.

4 Conclusions

The electron pair density can be decomposed into the
symmetric and antisymmetric parts. Such decomposition
describes electrons that couple to a singlet and triplet pair,
respectively. The division of the whole space into compact
mutually exclusive space filling micro-cells enclosing a fixed
fraction of a triplet pair defines the D(t)-restricted space par-
titioning. The electron localizability indicator ELI for triplet
coupled electrons is proportional to the triplet charges in the
micro-cells of the D(t)-restricted partitioning. It describes the
correlation of electronic motion of electrons forming a trip-
let pair. In case of spin-polarized calculation this approach
yields a single functional which takes into account both spin
channels at once. Additionally, it was shown that the ELI for
singlet-coupled electrons reproduces in the spin-unpolarized
case the electron localizability indicator for antiparallel-spin
pairs ELIA.
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